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ABSTRACT 

Initial analysis of the Summer 2010 Half Module Data for the Cosmic Ray Veto (CRV) system 

indicates that leakage of photoelectrons (PE) at the face of the photo multiplier tubes (PMTs) 

may be influencing calculated scintillator efficiencies.  This investigation first examines the 

evidence for leakage of PE at the face of each PMT and then attempts to ascribe functional 

associations to the relationship between leakage and calculated scintillator efficiency.  To 

examine the evidence for leakage, we plotted histograms of the response for each scintillator 

(given a vertical cosmic ray through the trigger scintillators) and ordered the histograms to 

reflect fiber layout at the PMT.  We demonstrate that the leakage, which is similar for both 

PMTs, is on the order of a single photoelectron (SPE) and that it is typically constrained to 

horizontally and vertically adjacent fibers on the PMT.  We then go on to describe the 

relationship between leakage and calculated scintillator efficiency.  By increasing the thresholds 

of the trigger scintillators, we increase the likelihood that a cosmic ray did indeed travel 

vertically through a specific column of the scintillators, thus providing a check to see if leakage 

causes calculated single layer efficiency (SLE) to be too low.  By increasing the thresholds of the 

middle scintillator, we increase the likelihood that the middle scintillator was not above threshold 

because of leakage, thus providing a check to see if leakage causes calculated SLE to be too 

high.  We determine that the former effect is indeed observable but that increasing errors that 

arise with increasing trigger thresholds prevent statistically significant results.  However, a 

theoretical ‘leakless’ SLE of .988 was calculated but again with a less than satisfying error. 
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BACKGROU	D 

 

1.1 Conservation of Lepton 	umber 

The six leptons in the Standard Model are the charged electron, muon, tau particle and each of 

their neutral ‘associated’ neutrinos.  These elementary particle ‘pairs’ are distinct in that they 

each have a different quantum number for ‘flavor.’  Conservation of lepton number is one of the 

fundamental tenets of the Standard Model.  Furthermore, conservation of lepton number 

typically includes the stipulation that ‘flavor’ be conserved as well
1
.  Roughly, this means that in 

the following decays, c+d must be equal to a+b: 

otherdcotherba

otherdcotherba

otherdecotherbea ee

+•+•→+•+•

+•+•→+•+•

+•+•→+•+•

ττ

µµ

ντντ
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1.1.1 Known Path for Muon Decay 

The muon and tau particle are not stable under everyday conditions.  Typically, muons undergo 

Michel-decay in the presence of a lighter nucleus such that:  

),(),(
__

ZAeZA e +++→+ −−
µννµ  

 

This conserves lepton number and flavor because the anti-(electron-neutrino) ‘cancels’ the lepton 

number of one for the electron so that each side of the decay has a lepton number of one (both of 

‘flavor’ muon).  The same is also true for the typical ‘capture’ of a muon by a heavier nucleus 

such that
2
: 

 

)1,(),( −+→+− ZAZA µνµ  

 

1.1.2 Predicted Path for Muon Decay 

The Standard Model does not strictly disallow lepton flavor violation (i.e. processes that do not 

conserve lepton flavor).  These processes have in fact been observed in the form of neutrino 

oscillations.  However, according to the Standard Model, charged-lepton flavor violation (CLFV) 

should be dynamically suppressed to a practically immeasurable level due to neutrino 

interactions.  However, there exist ‘Beyond’ Standard Model theories which are in accord with 

observed neutrino masses and which predict that the following rare decays occur at measurable 

levels
3
: 

 

e

eee

e

→

→

→

µ
µ

γµ
  

 

                                                           
1
 Hyperphysics. Quantum Physics, Particles, Particle Conservation Laws 

2
 “Proposal,” 17 

3
 Marciano, 317 
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1.2 Mu2e Experiment 

The Mu2e Experiment attempts to observe CLFV in the form of direct conversion of a muon to 

an electron in presence of a nucleus such that
4
: 

 

),(),( ZAeZA +→+ −−µ  

 

Observing this decay would provide support for the ‘Beyond’ Standard Model theories that 

predict it while failing to observe the decay with the greater precision of the Mu2e experiment 

would place constraints on these theories.    

 

1.2.1 Overview 

Currently, the ratio of direct conversion events to muon capture events in the presence of a gold 

nucleus is known to be less than 6.1*10
-13

 at the 90% confidence level.
5
  Over a two-year run, 

the Mu2e Experiment should be able to either lower that ratio to an order of ~10
-17

 or observe 

direct conversion of a muon to an electron at the 90% confidence level.
6
    

 

1.2.2 Cosmic Ray Veto 

Cosmic rays striking the upper atmosphere produce a cascade of lighter particles in high energy 

collisions so that approximately half of cosmic radiation at sea level is in the form of muons.
7
  

Without passive and active shielding, these muons would create an unwanted background of 

electrons at the energy expected for direct muon to electron conversion by scattering electrons 

from the target and by in-flight Michel-decay into electrons, thereby destroying the potential 

sensitivity of the experiment.
8
 

 

This background can be reduced to a non-interfering level with a combination of active and 

passive shielding.  The passive shielding is to be accomplished by building the experimental 

apparatus underground and by encasing the detector in 2.0m of concrete and 0.5m of steel.  The 

active shield will disregard results that coincide with passing cosmic rays which will be detected 

with 99.99 percent efficiency as they pass through a triple layer of scintillating material that 

detects charged particles (and thus cosmic ray muons and electrons).
9
  This active shield is called 

the cosmic ray veto (CRV) system. 

 

HALF MODULE 

 

2.1 Schematics 

To achieve a 99.99% efficiency for CRV, each layer in the triple layer of scintillating material 

would need to have an efficiency of at least 99%.  In the summer of 2009 and 2010, a model of 

the CRV underwent preliminary testing.  This model was constructed using 30 scintillators of 

dimension 470cm x 10cm x 1cm where these bars were layered and numbered via the diagram 

                                                           
4
 “Proposal,” 5 

5
 SI Collaboration, 337 

6
 “Proposal,” 20 

7
 Hyperphysics. Astrophysics, Cosmic Rays 

8
 “Proposal,” 32 

9
 “Proposal,” 51 
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below.  Each of the 30 bars is connected via a bundle of 3 fibers to a single channel on one of 

two PMTs where each PMT has 16 channels.  The bars in the ‘left’ half of the apparatus are 

connected to the ‘right’ PMT while the bars in the ‘right’ half of the apparatus are connected to 

the ‘left’ PMT, again according to the numbering in the diagram.
10

 

 

2.1.1 Scintillator and PMT 	umbering 

 
 

2.2 Summer 2010 

The data taken in the summer of 2010 is analyzed and compared to the results from the 2009 data 

in Mu2e-doc-1382. 

 

2.2.1 Data Summary 

The files used for analysis in this study are: 

100730Trig1SptP0_880V_0822.txt 

100720Trig123Rec1T1_2T2_31SptranP1_T3880V_1802.txt 

100722Trig123Rec1T1_21_32SptranP2_T3880V_1720.txt 

100728Trig123Rec1T1_21_32SptranP3_T3880V_0830.txt 

100726Trig123Rec1T1_21_32SptranP4_T3880V_0951.txt 

100726Trig123Rec1T1_21_32SptranP5_T3880V_1543.txt 

100727Trig123Rec1T1_21_32SptranP6_T3880V_0900.txt 

100728Trig123Rec1T1_21_32SptranP7_T3880V_1612.txt 

 

These files were converted to root files which will be referred to as P0-P7, respectively.  

Throughout this study, I will use P3 because it is the closest run to the readout end that does not 

have any corrupted channels.  Both P1 and P2 have the channels for s7 and s17 corrupted.
11

   

 

                                                           
10

 Glenzinski 777,  2 
11

 See UVA Mu2e elog for 12APR11, “Major points discussed with Yuri” 
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2.2.2 Trigger Placement 

The P0 run was a calibration run taken with the trigger placed away from the scintillator 

apparatus.  For the P1-P7 runs, the trigger was placed perpendicularly to the long axes of the 

scintillator bars at varying distances from the readout end.  P1 was 50cm from the readout end 

and each successive P_  run was an additional 50cm from the readout end.
12

    

 

Furthermore, for the summer 2010 data, the second trigger was placed below the scintillator 

apparatus and a third trigger was also used.  This configuration reduced the percentage of ‘hot’ 

events from about 8% to 0.5%.
13

  Based on the data in runs P1-P7, this trigger was connected to 

the channel on the PMT that the diagram above indicates as corresponding to s1.  The plot below 

is from P3 and is representative of P1-P7. 

 

 
 

2.2.3 Initial Analysis 

In Mu2e-doc-1382, the single layer efficiency (SLE) for the middle layer of scintillators was 

calculated to be 91-94% depending on position from the readout end (for the 2010 data).  This 

calculation is taken to be performed as follows for each run: 

 

∑ =
=

>
>

=

10

1

]_2&[__

]_2&1&[__

n n

n
thresholdsrespectivenssneventsof�umber

thresholdsrespectivensnssneventsof�umber

εε

ε
 

                                                           
12

 Glenzinski 777, 4 
13

 Glenzinski 1382, 66 
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where ‘n’ designates a particular ‘column’ of three scintillators.  These efficiencies are raised by 

1-2% if the offset of the middle scintillator is taken into effect.  This is done with an ‘or’ 

statement in the numerator to include the possibility that the cosmic ray went through the nearest 

neighbors
14

.  The numerator would then become: 

 

]_2&)}1(1||1||)1(1{&[__ thresholdsrespectivensnsnsnssneventsof�umber >+−  

 

It was also noted in document 1382 that the histograms for the above threshold events in each 

scintillator do not follow Poisson statistics but rather have an excess at what is assumed to be 1 

photoelectron (PE) as shown below
15

 

 
It was suggested that efficiencies be reinvestigated by raising the thresholds for the denominator 

to >1.7PE to remove the 1PE noise peak from the top/bottom scintillators.
16

 

 

                                                           
14

 Glenzinski 1382, 43 
15

 Glenzinski 1382, 55 
16

 Glenzinski 1382, 61 
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DATA PROCESSI	G 

 

3.1 Evidence for Leakage 

This section will present data that will hopefully clarify the nature of what we mean by ‘leakage’ 

in this study. 

 

3.1.1 Processing Methodology 

To develop the methodology for characterizing leakage at the face of the PMTs, it is first 

necessary to examine the fiber schematics of Section 2.1.1 which detail the connections between 

the scintillator apparatus and the PMTs.  The fibers of two scintillators can have four distinct 

relationships at the face of the PMTs:  (I) The fibers are horizontally/vertically adjacent on the 

same PMT.  (II) The fibers are diagonally adjacent on the same PMT.  (III) The fibers are not 

adjacent but are attached to the same PMT.  (IV) The fibers are not attached to the same PMT.   

 

The leakage will first be examined by inspection.  This will be done by making histograms for all 

the scintillators with the condition that s5, s15, and s25 be above threshold.
17

  The histograms 

will be arranged to reflect their layout on the PMTs.  This process will be repeated with the 

condition that s6, s16, and s26 be above threshold. 

 

The fiber schematics will also be exploited to derive a numerical description of ‘leakage.’  For 

each PMT, two dimensional histograms will catalogue the combined above threshold response 

(in number of photoelectrons) for all scintillators with a Type I relation to the trigger scintillators 

described above.  These values are plotted against the average number of photoelectrons in the 

triggers.  This will be repeated for the combined Type II/III relations and the Type IV relations. 

 

The following programs in C++ (attached as appendices) were written to effect each of the 

above: 

 

PMT_chart.C 

Leakage_LR.C

                                                           
17

 Thresholds and SPE peaks discussed in Appendix A  
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3.1.2 Output 

Plots ‘a’ through ‘d’ were constructed with PMT_chart.C 

 

a.  ‘Right’ PMT (‘left’ side of apparatus when viewed from the readout end) for s5, s15, s25 

above threshold 
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b.  ‘Left’ PMT (‘right’ side of the apparatus when viewed from the readout end) for s5, s15, s25 

above threshold 
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c.  ‘Left’ PMT for s6, s16, s26 above threshold 
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d.  ‘Right’ PMT for s6, s16, s26 above threshold 
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e.  Text Output for Leakage_LR.C 

PMT 0 corresponds to the right PMT and thus the left half of the apparatus 

-The triggers for PMT 0 are s5, s15 and s25 

-The Type I channels are s4, s11, s14 and s21 

-The Type II/III channels are s2, s3, s12, s13, s22, s23 and s24 

-The Type IV channels are the channels attaching to the other PMT, excluding s10 because this 

is the equivalent of excluding s1 on PMT1 (which is used for a trigger) 

 

PMT 1 corresponds to the left PMT and thus the right half of the apparatus 

-The triggers for PMT 1 are s6, s16 and s26 

-The Type I channels are s7, s17, s20 and s30 

-The Type II/III channels are s8, s9, s18, s19, s27, s28 and s29 

-The Type IV channels are the channels attaching to the other PMT, excluding s1 (which is used 

for a trigger) 

 

For all calculations, ‘exp prob’ stands for ‘experimental probability’ and is calculated such that: 

 

thresholdabovetriggersthreeallwithevents

TypeXofscin

thresholdtriggersgiventhresholdaboveTypeXofscin

P

events

______#

__#

)_(_____#∑ >

=

 
22733 events in P3 with 22513 events not 'hot' (a ‘hot’ event is defined 
to be any event with > 15 scintillators above threshold and ‘hot’ 
events are excluded from the results) 

 
0.0903034 percent of events for PMT 0 with all three trigger scintillators 
above threshold (2033 number of such events) 
 
0.0807919 TypeI leakage exp prob for PMT 0 
657 number of such events (4 scint per 'event') 
 
0.0210105 TypeII/III leakage exp prob for PMT 0 
299 number of such events (7 scint per 'event') 
 
0.0169349 TypeIV leakage exp prob for PMT 0 
482 number of such events (14 scint per 'event') 
 
0.0720028 percent of events for PMT 1 with all three trigger scintillators 
above threshold (1621 number of such events) 
 
0.0692474 TypeI leakage exp prob for PMT 1 
449 number of such events (4 possible scint per 'event') 
 
0.0240592 TypeII/III leakage exp prob for PMT 1 
273 number of such events (7 possible scint per 'event') 
 
0.0220323 TypeIV leakage exp prob for PMT 1 
500 number of such events (14 possible scint per 'event') 
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f.  Graphical Output for Leakage_LR.C 

 

The first pair of two-dimensional histograms below plot the Type I ‘Leakage’ events (in nPE) for 

all scintillators with a Type I relation to at least one of the trigger scintillators.  The second two 

histograms do so for the combined Type II/III events and the third two histograms do so for the 

Type IV events.  The x-axis is an average number of PE for the three trigger scintillators and the 

scaling for nPE was done by dividing the measured ADC by the mean of the SPE peak.  NB: 

Because there are a different number of scintillators for each ‘TypeX,’ the number of ‘Entries’ 

must be divided by the number of scintillators for that particular ‘TypeX’ to compare probability 

of leakage (detailed in e.). 
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3.2 Leakage and Efficiency 

This section will present data used to make conclusions about the effect of leakage on calculated 

single layer efficiency (SLE). 

 

3.2.1 Processing Methodology 

To develop the methodology for characterizing the effect of leakage on SLE, it is necessary to 

recognize the role that thresholds play.  In the original calculation, the threshold was taken to be: 

SPEpedestalpedestal ADColdthreshold µσµ ×≅+×+=
3

1105_  

 

However, this threshold has two negative effects.  First, if there is leakage of order 1PE, then the 

denominator events may not actually represent events where a cosmic ray passed vertically 

through the column of scintillators.  Secondly, this threshold does not take into account enough 

of the ‘heavy’ tail of the pedestal.  We therefore take the thresholds to be the minimum between 

the pedestal and the SPE peak
18

.  We imaginatively call this new threshold:  

SPEnewthreshold µ
2

1_ ≅  

 

The ‘above threshold response’ in both trigger scintillators (sn and s2n) ensures via geometry 

that the cosmic ray has passed through the middle scintillator (s1n) whose efficiency we are 

calculating.
19

  Threshold_new better ensures that pedestal noise does not significantly affect the 

calculated efficiency.   

                                                           
18

 Modeled SPE peaks are displayed in Appendix Section 5.2.  Note that the left edge of the fitted Gaussian was 

chosen to correspond with the threshold_new for each scintillator 
19

 Throughout this study we will use the nearest neighbor requirement given in Section 2.2.3.  This is acceptable 

because we are calculating single layer efficiency.  We therefore will be calculating the efficiencies for different 

portions of the layer rather than for specific scintillators in the layer.  When we discuss an effect for ‘s1n,’  it would 

be more precise to use the phrase ‘three scintillator portion of the middle layer centered at s1n’  
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Because this threshold is below the mean for the single photoelectron (SPE) peak and because 

most ‘leakage’ is of order 1PE (see Section 3.1.2.f.), we would expect noise due to leakage to 

affect the calculated efficiency. To investigate this effect we will vary the thresholds used in 

calculating the SLE as functions of the parameters for the SPE peak
20

. 

 

We will refer to the thresholds used for the trigger scintillators (sn and s2n) as: 

threshold_a 

 

We will refer to the thresholds for the middle scintillators (s1n, s1(n-1) and s1(n+1)) as: 

threshold_b 

 

First, we will vary threshold_a such that: 

SPEaathreshold µ×=_  with a = {0.5,0.75,1.0,1.25,1.5,1.75,2.0,2.25,2.5,2.75,3.0,3.25} 

newthresholdbthreshold __ =  

 

We will vary these thresholds such that: 

SPESPE

SPESPE

bbthreshold

aathreshold

σµ

σµ

×+=

×+=

_

_
 

 

First, we take ‘a’ and ‘b’ to be the following to get an overview of the trend: 

n 1 2 3 4 5 6 7 8 9 10 11 12 

a -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 

b -0.75 -0.50 -0.25 0.0 0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0 

 

Additionally, we will vary threshold_a as above and calculate SLE using: 

threshold_b = threshold_new 

 

This will be done using  

 

Then, for reasons explained in Section 3.2.2, we will take ‘a’ and ‘b’ to be: 

n 1 2 3 4 5 6 7 8 

a -0.842 -0.524 -0.253 0.0 0.253 0.524 0.842 1.282 

b -0.842 -0.524 -0.253 0.0 0.253 0.524 0.842 1.282 

 

The following programs in C++ (attached as appendices) were written to effect each of the 

above: 

 

SLE_threshold_a.C   SLE_threshold_ab.C  Surface.C 

                                                           
20

 Note that the varied thresholds for each scintillator will always be greater than or equal to threshold_new 
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3.2.2 Output 

a. Output from SLE_threshold_a.C 

 
The ‘row order’ for the first data block is repeated throughout 
 
    s12    s13    s14    s15    s16    s17    s18    s19 
  
 0.9772 0.9936 0.9620 0.9086 0.9872 0.9894 0.9766 0.9693    Efficiency 
   2895   2029   2418   1882   1646   1512   1624   1171    Denominator 
 0.0258 0.0312 0.0279 0.0304 0.0345 0.0361 0.0345 0.0404    Poisson Error 
 0.0028 0.0018 0.0039 0.0066 0.0028 0.0026 0.0038 0.0050    Binomial Error 
 
 0.9775 0.9941 0.9641 0.9153 0.9873 0.9900 0.9768 0.9681 
   2715   1858   2286   1452   1414   1297   1511   1097 
 0.0267 0.0327 0.0288 0.0347 0.0372 0.0390 0.0357 0.0417 
 0.0028 0.0018 0.0039 0.0073 0.0030 0.0028 0.0039 0.0053 
 
 0.9774 0.9936 0.9641 0.9133 0.9888 0.9914 0.9790 0.9693 
   2479   1571   2062   1176   1163   1047   1380   1009 
 0.0279 0.0355 0.0303 0.0385 0.0411 0.0434 0.0375 0.0435 
 0.0030 0.0020 0.0041 0.0082 0.0031 0.0029 0.0039 0.0054 
 
 0.9793 0.9925 0.9675 0.9119 0.9891 0.9913 0.9802 0.9729 
   2267   1193   1848    897    921    804   1214    887 
 0.0292 0.0407 0.0321 0.0441 0.0462 0.0495 0.0400 0.0465 
 0.0030 0.0025 0.0041 0.0095 0.0034 0.0033 0.0040 0.0054 
 
 0.9792 0.9913 0.9703 0.9130 0.9905 0.9936 0.9794 0.9719 
   2015    917   1686    701    738    621   1068    784 
 0.0310 0.0464 0.0337 0.0499 0.0517 0.0565 0.0426 0.0494 
 0.0032 0.0031 0.0041 0.0106 0.0036 0.0032 0.0043 0.0059 
 
 0.9820 0.9904 0.9691 0.9157 0.9892 0.9937 0.9784 0.9710 
   1726    729   1489    498    558    474    926    689 
 0.0336 0.0520 0.0358 0.0593 0.0594 0.0646 0.0457 0.0527 
 0.0032 0.0036 0.0045 0.0125 0.0044 0.0036 0.0048 0.0064 
 
 0.9808 0.9929 0.9700 0.9290 0.9909 0.9941 0.9798 0.9726 
   1462    567   1300    352    439    341    792    620 
 0.0365 0.0591 0.0383 0.0714 0.0670 0.0762 0.0495 0.0556 
 0.0036 0.0035 0.0047 0.0137 0.0045 0.0041 0.0050 0.0066 
 
 0.9813 0.9954 0.9745 0.9447 0.9914 0.9962 0.9789 0.9699 
   1233    433   1100    253    348    261    662    531 
 0.0397 0.0677 0.0418 0.0852 0.0753 0.0873 0.0541 0.0600 
 0.0039 0.0033 0.0047 0.0144 0.0050 0.0038 0.0056 0.0074 
 
 0.9797 1.0000 0.9747 0.9494 0.9887 1.0000 0.9782 0.9712 
   1033    327    947    178    265    197    550    451 
 0.0433 0.0782 0.0451 0.1020 0.0861 0.1008 0.0593 0.0652 
 0.0044 0.0000 0.0051 0.0164 0.0065 0.0000 0.0062 0.0079 
 
 0.9828 1.0000 0.9740 0.9752 0.9898 1.0000 0.9824 0.9792 
    815    244    807    121    197    160    454    385 
 0.0489 0.0905 0.0488 0.1262 0.1000 0.1118 0.0655 0.0710 
 0.0046 0.0000 0.0056 0.0141 0.0071 0.0000 0.0062 0.0073 
 
 0.9814 1.0000 0.9729 0.9762 0.9874 1.0000 0.9790 0.9785 
    646    183    663     84    159    116    381    325 
 0.0549 0.1045 0.0538 0.1515 0.1111 0.1313 0.0713 0.0772 
 0.0053 0.0000 0.0063 0.0166 0.0088 0.0000 0.0073 0.0081 
 
 0.9828 1.0000 0.9801 0.9825 1.0000 1.0000 0.9834 0.9752 
    524    134    554     57    111     86    301    282 
 0.0610 0.1222 0.0592 0.1849 0.1342 0.1525 0.0805 0.0826 
 0.0057 0.0000 0.0059 0.0174 0.0000 0.0000 0.0074 0.0093 
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b. Example text output for SLE_threshold.C  

A data block was generated for each middle scintillator and then those values were inserted into 

the program ‘Surface.C’ 

 

The top row contains the number of trigger events for each value of threshold_a (increasing) 

Threshold_a increases down the columns 

Threshold_b increases across the rows 

 
For s12: 
 
2786  2629  2445  2311  2172  1991  1798  1627  1462  1302  1159  1014 
    
 0.9620, 0.9526, 0.9419, 0.9286, 0.9139, 0.9009, 0.8848, 0.8693, 0.8579, 0.8388, 0.8234, 0.8087, 
 0.9623, 0.9536, 0.9429, 0.9296, 0.9156, 0.9030, 0.8859, 0.8703, 0.8585, 0.8406, 0.8262, 0.8113, 
 0.9616, 0.9538, 0.9431, 0.9301, 0.9170, 0.9043, 0.8871, 0.8716, 0.8593, 0.8409, 0.8258, 0.8110, 
 0.9641, 0.9563, 0.9455, 0.9325, 0.9191, 0.9061, 0.8884, 0.8728, 0.8602, 0.8412, 0.8265, 0.8118, 
 0.9655, 0.9581, 0.9466, 0.9342, 0.9222, 0.9093, 0.8909, 0.8762, 0.8633, 0.8439, 0.8283, 0.8131, 
 0.9684, 0.9608, 0.9493, 0.9377, 0.9262, 0.9126, 0.8940, 0.8800, 0.8669, 0.8483, 0.8322, 0.8167, 
 0.9683, 0.9600, 0.9494, 0.9372, 0.9260, 0.9132, 0.8943, 0.8810, 0.8693, 0.8498, 0.8331, 0.8176, 
 0.9668, 0.9582, 0.9471, 0.9348, 0.9244, 0.9121, 0.8949, 0.8808, 0.8697, 0.8494, 0.8322, 0.8187, 
 0.9692, 0.9610, 0.9508, 0.9384, 0.9282, 0.9159, 0.8981, 0.8844, 0.8735, 0.8543, 0.8372, 0.8235, 
 0.9693, 0.9601, 0.9493, 0.9363, 0.9270, 0.9140, 0.8986, 0.8856, 0.8740, 0.8541, 0.8379, 0.8257, 
 0.9681, 0.9586, 0.9474, 0.9336, 0.9232, 0.9120, 0.8965, 0.8818, 0.8697, 0.8499, 0.8352, 0.8240, 
 0.9704, 0.9625, 0.9527, 0.9389, 0.9300, 0.9201, 0.9063, 0.8974, 0.8856, 0.8659, 0.8511, 0.8422, 
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c. Graphical Output for SLE_thresholds_ab.C for first chart of threshold values 
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d. Graphical Output for SLE_thresholds_ab.C for second chart of threshold values 
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TRE	DS A	D CO	CLUSIO	S 

 

4.1 Evidence for Leakage 

 

4.1.1 Understanding the Trend 

Focusing on the PMT layout diagrams of Section 3.1.2 a-d, we see that neighboring channels on 

the PMT (those with a ‘TypeI’ relation) demonstrate pronounced light sharing.  Other channels 

on the same PMT demonstrate minimal light sharing that is greater than, but of the same 

magnitude as, the ‘above threshold response’ on the other PMT.  This opposite PMT 

correspondence cannot physically be due to ‘leakage’ at the face of the PMT.  From the 

histograms and data of Section 3.1.2 e-f, we know that we should expect ‘leakage’ on the order 

of 1PE in each channel with a TypeI relation to a scintillator with a through-going cosmic ray 

with a probability of ~7-8%.  Interestingly, for TypeII/III relations and especially Type IV 

relations, the order of magnitude for ‘leakage’ is less ‘focused’ around 1PE and is skewed high.  

This skewing is probably a factor of viewing all of the scintillators for a given type on the same 

histogram.  Because we are viewing seven scintillators for TypeII/III and 14 scintillators for 

TypeIV, we are essentially magnifying pedestal noise (or noise from elsewhere) for these 

channels.   

 

4.1.2 ‘Left’ vs ‘Right’ side of Apparatus 

The left and right side of the apparatus, corresponding to the right and left PMTs (respectively), 

demonstrate similar trends, intensities and probabilities for ‘leakage.’  Neither PMT dominates.  

For example, from Section 3.1.2 e, we see that while the right PMT has a higher expectation for 

TypeI leakage by ~15%, the opposite is true for TypeII/III and Type IV relations. 

 

4.2 Leakage and Efficiency 

 

4.2.1 Understanding the Trend 

There are two potential effects that ‘Leakage’ at the face of the PMT could have when 

calculating SLE.  If the ‘above threshold response’ in the trigger scintillators is due to leakage 

rather than a through-going cosmic ray, the denominator will have too many events and the 

efficiency will thus be biased low.  If the ‘above threshold response’ in the middle scintillators is 

due to leakage rather than a through-going cosmic ray, the numerator will be too large and thus 

the efficiency will be biased high. 

 

We first increase threshold_a in order to increase the purity of the events in the denominator.  

Increasing this threshold increases purity because the probability of having an above threshold 

response due to pedestal noise or ‘leakage’ decreases as we increase nPE.  This is only 

compounded by the fact that we have two triggers.  Also, because cosmic ray muons are a 

‘minimum ionizing particle,’ the nPE excited by the through-going cosmic ray depends only on 

distance travelled through the scintillating material.
21

  In other words, the mean for what should 

be a Poisson distribution of above threshold response in the middle scintillators should not 

change as we adjust the trigger thresholds.  Therefore, increasing trigger thresholds should 

increase purity without altering other factors.  However, the price of increasing purity is 
                                                           
21
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decreasing the number of events that meet the condition.  This thereby increases the statistical 

error and such increases in error can effectively nullify any gains in calculated efficiency.  The 

effect is plotted below and the different methods of calculating these errors are discussed in 

Section 4.2.2.  The data below
22

 represents (SLE  – ‘1σ’ of the associated error) averaged over 

s12-19 and the x-axis is the change in ‘a’ for: 

SPEaathreshold µ×=_  

 

 Effect of Uncertainty on Efficiency Calculation 

 
So while the surface plots in Section 3.2.2 demonstrate that increasing the trigger threshold 

yields an increase in efficiency, the increase is counterproductive (at least using Poisson errors) 

as the uncertainty in the efficiency increases faster than the efficiency. 

 

Thus the introduction of the novel scale used for both thresholds
23

 in Section 3.2.2 d: By using 

these specific values for ‘a’ and ‘b,’ we increase the thresholds in such a way that the area under 

the SPE peak increases linearly as we increase the thresholds.  This condition is secured by using 

the cumulative distribution function (cdf) for a Gaussian
24

 where: 
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The following were solved numerically using the online graphing program ‘Wolfram Alpha’ 

cdf(z) 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.8 

z -0.842 -0.524 -0.253 0.0 0.253 0.524 0.842 1.282 

                                                           
22

 Output from Efficiency_a.C manipulated with Excel 
23

 And of the programs that use these thresholds: Efficiciency_ab.C and Surface.C 
24

 Wolfram 
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Recall that the definition of the z standard variable is:    

σ
µ−

≡
x

z   which rearranged is:      bathresholdzx /_=×+= σµ   

 

If the effect of ‘leakage’ on efficiency is linear and if ‘leakage’ can be accurately modeled by a 

Gaussian, then changing the thresholds in the manner described above will change the total 

fraction of leakage at a constant rate which should then affect efficiency linearly.  This is done in 

Section 3.2.2 d for each middle scintillator.  This is appealing because it allows us to make 

predictions for the effect of leakage on SLE for large values of sigma using data points in a 

narrow range.   

 

We see that as we increase threshold_a in this manner, we get a visually ‘nice’ linear increase in 

efficiency.  However, as we increase threshold_b, we at first observe what appears to be a 

negative linear response in calculated SLE.  However, as threshold_b approaches 1.0, the 

decrease in efficiency increases more rapidly.  This is at least partly accounted for by the 

increasing number of actual cosmic ray events that will not be counted.
25

 

 

By averaging the efficiencies for the middle scintillators, inverting the scaling for threshold_a
26

 

and by only considering z = 0.2 to z = 0.6 for threshold_b, we can develop a linear model for the 

effect of leakage on SLE.  Furthermore, the constant in this particular model corresponds to a 

theoretical SLE with zero leakage. 

 

Parameters drawn from 
averaged efficiencies 
 
0.988207 w/ error 0.5517 
is the constant and 
THEORETICAL SLE 

 
0.0130706 w/ error 0.6692 
is the change in 
efficiency per fraction 
SPE of the trigger 
scintillators 
 
-0.103619 w/ error 1.084 
is the change in 
efficiency per fraction 
SPE of the middle 
scintillators 
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 Recall that even if the triggers are well above threshold, the middle scintillators should remain Poisson 

distributed so that there will be a portion of what had been ‘above threshold response’ below the new cut 
26

 threshold_a � -1.0*(1.0-threshold_a) 
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4.2.2 Statistical Uncertainty 

There are two common methods for calculating the statistical uncertainty for efficiency.  The 

first uses the formula for the propagation of errors and assumes the characteristics of a Poisson 

distribution and the second considers the process of ‘applying thresholds when determining 

efficiency’ to be a binomial process.  The Binomial method is best suited for calculating the 

errors associated with efficiencies that are neither near 0.0 nor 1.0 and since these efficiencies 

are very near to 1.0.  Therefore, where not otherwise specified, we have used the larger Poisson 

uncertainties in the discussion of data trends.
27

  

Poisson: 

�k�

k

�

�

k

k 11
22

+=






+






=
δδ

εδε  

Binomial: 








 −=−==
�

k
k

�
�

��

k 1
1

)1(
1

εε
σ

δε  

 

4.3 Recommendations for Future Study  

Much of the analysis in this note (and the analysis in the several others that I have referenced) 

relies on the fact that the excess seen above what should be a Poisson distribution for each 

scintillator is taken to be the single photoelectron peak.  The PMTs could be tested and calibrated 

with a known intensity light source to verify this assumption and to provide confidence to these 

results and others.  It seems possible that as an alternative to the SPE, the excess is in fact the 

direct result of ‘leakage.’  It is plausible to imagine adding the characteristic shapes for TypeI 

leakage to Poisson distributions to achieve the shape of the histograms for each scintillator.  If 

the excess is indeed due specifically to leakage, it could still be of order 1PE, but it would not 

have to be so a priori. 

                                                           
27
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5.3 Data Processing Algorithms 

 

5.3.1 Evidence for Leakage 

PMT_chart.C 

{ 
  //Set the scintillators that you desire to test against  
  //(i.e. require this scintillator to be above threshold and then see occupancy of others but in 
PMT schematic order 
  int test1 = 5; 
  int test2 = 15; 
  int test3 = 25; 
 
  //int test1 = 6; 
  //int test2 = 16; 
  //int test3 = 26 
   
  gROOT->ForceStyle(); 
  gROOT->SetStyle("Plain"); 
  gStyle->SetPalette(1); 
   
   //Determined by inspection of the minimum for P3 
  float thresholds[32] = {0.0, 0.0, 70.0, 70.0, 70.0, 70.0, 90.0, 90.0, 100.0, 100.0, 100.0, 
         80.0, 90.0, 80.0, 80.0, 90.0, 80.0, 70.0, 80.0,  80.0,  50.0,  
         40.0, 40.0, 60.0, 60.0, 30.0, 80.0, 40.0, 50.0,  90.0,  80.0, 0.0}; 
 
  //SPE data from SPE_P3.C 
  float SPE_mean[32] = {0.0, 535.54, 164.95, 164.60, 156.23, 158.08, 242.23, 173.04, 220.08, 
227.65, 189.09,  
   150.40, 178.75, 146.53, 166.79, 165.97, 194.37, 145.65, 208.20, 176.26, 
129.30,  
   125.46, 116.04, 137.64, 164.51, 83.40, 159.28, 113.11, 132.74, 185.54, 
178.19, 0.0}; 
   
  float SPE_sigma[32] = {0.0, 147.01, 64.25, 53.30, 56.86, 66.92, 100.89, 60.87, 76.10, 84.19, 
85.30,  
    58.49, 66.30, 49.03, 59.69, 57.57, 77.03, 57.17, 102.89, 94.51, 60.08,  
    53.61, 51.55, 51.64, 61.61, 45.14, 61.86, 61.10, 56.97, 86.76, 83.53, 
0.0}; 
   
  //loop over the file 
  for (int ifile=3; ifile<=3; ifile++) { 
     
    //Get the file (in quotes with '.root') 
    string infile = Form("P%d.root",ifile); 
    TFile *_file0 = TFile::Open(infile.c_str()); 
     
    //Get the tree and the leaves 
    tv__tree = (TTree *) gROOT->FindObject("ntuple"); 
    TLeaf *l_s[32]; 
    l_s[0] = tv__tree->FindLeaf("bottomtrig"); 
    l_s[31] = tv__tree->FindLeaf("toptrig"); 
    for ( int ileaf = 1; ileaf <= 30; ileaf++ ) { 
      string s_leaf = Form("s%d",ileaf); 
      l_s[ileaf] = tv__tree->FindLeaf(s_leaf.c_str()); 
    } 
     
    //Get the number of events 
    int nevent = int(tv__tree->GetEntries()); 
    cout<<nevent<<endl<<endl; 
         
    // hot[event#]==1 iff the event is hot (i.e. greater than than 50percent of scint. above 
threshold) 
    int hot[nevent]; 
    int lit=0; 
    int hot_total=0; 
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    for ( int iloop = 0; iloop < nevent; iloop++) { 
      tv__tree->GetEntry(iloop); 
       
      lit = 0; 
      for (int ileaf=1; ileaf<=30; ileaf++) { 
 if ( l_s[ileaf]->GetValue() > thresholds[ileaf]) { 
   lit++; 
 } 
      } 
       
      if (lit>15) { 
 hot_total++; 
 hot[iloop]=1; 
      } 
    } 
    cout<<nevent<<endl; 
    cout<<hot_total<<endl; 
    float percent_hot = float(hot_total)/float(nevent); 
    cout<<percent_hot<<endl; 
    cout<<(nevent - hot_total)<<endl; 
        
    //Book histograms 
    TH1F *hist_array[31]; 
    int bins = 150; 
    for (int ihist=1; ihist<=30; ihist++) { 
      string hist_ADC = Form("P3_s%dADC",ihist); 
      string nameADC = Form("s%d given s%d, s%d, and s%d 'lit'",ihist,test1,test2,test3); 
      hist_array[ihist] = new TH1F(hist_ADC.c_str(),nameADC.c_str(),bins,0.0,1500.0); 
    } 
 
    //Loop over the events 
    for (int ievent=0; ievent<nevent; ievent++) { 
       
      //Exclude hot events 
      if (hot[ievent] != 1) { 
  
 //Get entries for each event 
 tv__tree->GetEntry(ievent); 
  
 for (int ihist=1; ihist<=30; ihist++){ 
    
   float cond1 = float(l_s[test1]->GetValue()); 
   float cond2 = float(l_s[test2]->GetValue()); 
   float cond3 = float(l_s[test3]->GetValue()); 
 
   if((cond1>thresholds[test1]) && (cond2>thresholds[test2]) && (cond3>thresholds[test3]) 
) { 
    
     float x = float(l_s[ihist]->GetValue()); 
     hist_array[ihist].Fill(x); 
   } 
 } 
      } 
    } 
     
    //Print histograms   
    TCanvas *c_1 = new TCanvas("c_1",infile.c_str(),0,0,1600,1600); 
    c_1->Divide(4,4); 
     
    //Left PMT 
    /*             
    for (int ipad=2; ipad<=16; ipad++) { 
 
      c_1->cd(ipad);       
 
      if (ipad==2) hist_array[6]->Draw(); 
      if (ipad==3) hist_array[7]->Draw(); 
      if (ipad==4) hist_array[8]->Draw(); 
      if (ipad==5) hist_array[9]->Draw(); 
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      if (ipad==6) hist_array[10]->Draw(); 
      if (ipad==7) hist_array[16]->Draw(); 
      if (ipad==8) hist_array[17]->Draw(); 
      if (ipad==9) hist_array[18]->Draw(); 
      if (ipad==10) hist_array[19]->Draw(); 
      if (ipad==11) hist_array[20]->Draw(); 
      if (ipad==12) hist_array[26]->Draw(); 
      if (ipad==13) hist_array[27]->Draw(); 
      if (ipad==14) hist_array[28]->Draw(); 
      if (ipad==15) hist_array[29]->Draw(); 
      if (ipad==16) hist_array[30]->Draw(); 
 
      gPad->SetLogy(); 
    } 
    */   
     
    //Right PMT 
    for (int ipad=1; ipad<=16; ipad++) { 
 
      c_1->cd(ipad);       
 
      if (ipad==1) hist_array[3]->Draw(); 
      if (ipad==2) hist_array[14]->Draw(); 
      if (ipad==3) hist_array[25]->Draw(); 
      if (ipad==4) hist_array[21]->Draw(); 
      if (ipad==5) hist_array[4]->Draw(); 
      if (ipad==6) hist_array[15]->Draw(); 
      if (ipad==7) hist_array[11]->Draw(); 
      if (ipad==8) hist_array[22]->Draw(); 
      if (ipad==9) hist_array[5]->Draw(); 
      if (ipad==10) hist_array[1]->Draw(); 
      if (ipad==11) hist_array[12]->Draw(); 
      if (ipad==12) hist_array[23]->Draw(); 
      //if (ipad==13) hist_array[27]->Draw(); 
      if (ipad==14) hist_array[2]->Draw(); 
      if (ipad==15) hist_array[13]->Draw(); 
      if (ipad==16) hist_array[24]->Draw(); 
 
      if (ipad != 13) gPad->SetLogy(); 
    } 
        c_1.Print("PMT_right.gif"); 
  } 
} 

 

Leakage_LR.C 

{ 
  //Input: 
  // Program Runs P3 
  // 2 halves: Left and Right PMT 
 
  //Program: 
  // Catalogs above threshold response given s5, s15, s25 or s6, s16, s26 
  // Correlations using 2D histograms 
 
  //Output: 
  // Avg leakage in  
  // plots of 2D histograms with linear fit for left and right PMT 
 
  gROOT->ForceStyle(); 
  gROOT->SetStyle("Plain"); 
  gStyle->SetPalette(1);  
   
  //Backup to file 
  streambuf *output_buf; 
  ofstream output_stream; 
  output_stream.open("Leakage_LR.txt"); 
  output_buf = output_stream.rdbuf(); 
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  cout.rdbuf(output_buf); 
 
  //Determined by inspection of the minimum for P3 
  float thresholds[32] = {0.0, 0.0, 70.0, 70.0, 70.0, 70.0, 90.0, 90.0, 100.0, 100.0, 100.0, 
          80.0, 90.0, 80.0, 80.0, 90.0, 80.0, 70.0, 80.0, 80.0, 50.0,  
         40.0, 40.0, 60.0, 60.0, 30.0, 80.0, 40.0, 50.0, 90.0, 80.0, 0.0}; 
 
  //SPE data from SPE_P3.C 
  float SPE_mean[32]={0.0,535.54,164.95,164.60,156.23,158.08,242.23,173.04,220.08,227.65,189.09, 
  150.40,178.75,146.53,166.79,165.97,194.37,145.65,208.20,176.26,129.30,  
  125.46,116.04,137.64,164.51,83.40,159.28,113.11,132.74,185.54,178.19,0.0}; 
   
float SPE_sigma[32]={0.0,147.01,64.25,53.30,56.86,66.92,100.89,60.87,76.10,84.19,85.30, 
    58.49,66.30,49.03,59.69,57.57,77.03,57.17,102.89,94.51,60.08, 
    53.61,51.55,51.64,61.61,45.14,61.86,61.10,56.97,86.76,83.53,0.0}; 
 
  // Loop over the file 
  for (int ifile=3; ifile<=3; ifile++) { 
     
    //Get the file (in quotes with '.root') 
    string infile = Form("P%d.root",ifile); 
    TFile *_file0 = TFile::Open(infile.c_str()); 
     
    //Get the tree and the leaves 
    tv__tree = (TTree *) gROOT->FindObject("ntuple"); 
    TLeaf *l_s[32]; 
    l_s[0] = tv__tree->FindLeaf("bottomtrig"); 
    l_s[31] = tv__tree->FindLeaf("toptrig"); 
    for ( int ileaf = 1; ileaf <= 30; ileaf++ ) { 
      string s_leaf = Form("s%d",ileaf); 
      l_s[ileaf] = tv__tree->FindLeaf(s_leaf.c_str()); 
    } 
     
    //Get the number of events 
    int nevent = int(tv__tree->GetEntries()); 
    cout<<nevent<<" events in P"<<ifile<<endl<<endl; 
         
    // hot[event#]==1 iff the event is hot (i.e. greater than than 50percent of scint. above 
threshold) 
    // only okay because nevent for P1 is greatest...Why can't we redim with each file? 
    int hot[nevent]; 
    int lit=0; 
    int hot_total=0; 
     
    for ( int iloop = 0; iloop < nevent; iloop++) { 
      tv__tree->GetEntry(iloop); 
       
      lit = 0; 
      for (int ileaf=1; ileaf<=30; ileaf++) { 
 if ( l_s[ileaf]->GetValue() > thresholds[ileaf]) { 
   lit++; 
 } 
      } 
       
      if (lit>15) { 
 hot_total++; 
 hot[iloop]=1; 
      } 
    } 
 
    cout<<(nevent - hot_total)<<" events not 'hot'"<<endl<<endl; 
    nevent = nevent - hot_total; 
        
    //Book histograms 
    TH2F *hist_array[2]; 
    int bins = 20; 
    string hist_right = Form("P3_right_PMT"); 
    string hist_left = Form("P3_left_PMT"); 
    string name_right = Form("Type I events s5,15,25"); 
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    string name_left = Form("Type I events s6,16,26"); 
    hist_array[0] = new TH2F(hist_right.c_str(),name_right.c_str(),bins,0.0,20.0,bins,0.0,5.0); 
    hist_array[1] = new TH2F(hist_left.c_str(),name_left.c_str(),bins,0.0,20.0,bins,0.0,5.0); 
    for (int ihist=0; ihist<=1; ihist++) { 
      hist_array[ihist]->GetXaxis()->SetTitle("AVG nPE for Triggers"); 
      hist_array[ihist]->GetXaxis()->SetLabelSize(.03); 
      hist_array[ihist]->GetYaxis()->SetTitle("nPE Type I 'Leakage'"); 
      hist_array[ihist]->GetYaxis()->SetLabelSize(.03); 
    }    
 
    //Set cells of interest 
    int trig[2][3] = {5,15,25, 
        6,16,26}; 
    int trig_n[2] = {0,0}; 
 
    //s1 and s10 left out 
    int typeI[2][4] = {4,11,14,21, 
         7,17,20,30}; 
    int typeI_n[2] = {0,0}; 
 
    int typeIII[2][7] = {2,3,12,13,22,23,24, 
    8,9,18,19,27,28,29}; 
    int typeIII_n[2] = {0,0}; 
 
    //s1 and s10 left out 
    int typeIV[2][14] = {6,7,8,9,16,17,18,19,20,26,27,28,29,30, 
   ,2,3,4,5,11,12,13,14,15,21,22,23,24,25}; 
    int typeIV_n[2] = {0,0}; 
     
     
    // Loop over each PMT 
    for (int iside=0; iside<=1; iside++) { 
       
      //Loop over the events 
      for (int ievent=0; ievent<nevent; ievent++) { 
  
 //Exclude hot events 
 if (hot[ievent] != 1) { 
    
   //Get entries for each event 
   tv__tree->GetEntry(ievent); 
    
    
   //Did the cosmic ray go through s5,s15,s25 or s6,s16,s26 
   int ray = 0; 
   float xfill = 0.0; 
   for (int itrig=0; itrig<3; itrig++) { 
     int scint = trig[iside][itrig]; 
     float entry = float( l_s[scint]->GetValue() ); 
     float cond = float( thresholds[scint] ); 
     if (entry > cond) { 
       ray++; 
       xfill = xfill + (entry / SPE_mean[scint]); 
     } 
   } 
    
   //Fill the histograms if the cosmic ray was above threshold 
   if (ray == 3) { 
     trig_n[iside] = trig_n[iside] + 1; 
     xfill = xfill / 3.0; 
      
     // Type I 
     for (int i1=0; i1<4; i1++) { 
       scint = typeI[iside][i1]; 
       entry = float( l_s[scint]->GetValue() ); 
       cond = float( thresholds[scint] ); 
       if (entry > cond) { 
  typeI_n[iside] = typeI_n[iside] + 1; 
  float yfill = entry / SPE_mean[scint]; 
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  hist_array[iside].Fill(xfill,yfill); 
       } 
     } 
      
     // Type II/III 
     for (int i3=0; i3<7; i3++) { 
       scint = typeIII[iside][i3]; 
              entry = float( l_s[scint]->GetValue() ); 
              cond = float( thresholds[scint] ); 
              if (entry > cond) { 
                typeIII_n[iside] = typeIII_n[iside] + 1; 
              } 
     } 
      
     // Type IV 
     for (int i4=0; i4<14; i4++) { 
       scint = typeIV[iside][i4]; 
       entry = float( l_s[scint]->GetValue() ); 
       cond = float( thresholds[scint] ); 
       if (entry > cond) { 
  typeIV_n[iside] = typeIV_n[iside] + 1; 
       } 
     } 
   } 
 } 
      } 
    } 
 
    // Print results 
    for (int iside=0; iside<=1; iside++){ 
       
      float trig_percent = float(trig_n[iside]) / float(nevent); 
      cout<<trig_percent<<" percent of events for PMT "<<iside<<" with all three trigger scint 
above threshold"<<endl; 
      cout<<trig_n[iside]<<" number of such events"<<endl<<endl; 
       
      float typeI_prob = float(typeI_n[iside]) / (4.0 * trig_n[iside]); 
      cout<<typeI_prob<<" TypeI leakage exp prob for PMT "<<iside<<endl; 
      cout<<typeI_n[iside]<<" number of such events (4 possible scint per 'event')"<<endl<<endl; 
 
      float typeIII_prob = float(typeIII_n[iside]) / (7.0 * trig_n[iside]); 
      cout<<typeIII_prob<<" TypeII/III leakage exp prob for PMT "<<iside<<endl; 
      cout<<typeIII_n[iside]<<" number of such events (7 possible scint per 
'event')"<<endl<<endl; 
 
      float typeIV_prob = float(typeIV_n[iside]) / (14.0 * trig_n[iside]); 
      cout<<typeIV_prob<<" TypeIV leakage exp prob for PMT "<<iside<<endl; 
      cout<<typeIV_n[iside]<<" number of such events (14 possible scint per 
'event')"<<endl<<endl; 
 
      cout<<endl; 
    } 
 
    //Print histograms   
    TCanvas *c_1 = new TCanvas("c_1",infile.c_str(),0,0,800,400); 
    c_1->Divide(2); 
    for (int ipad=1; ipad<=2; ipad++) { 
      c_1->cd(ipad); 
      hist_array[ipad-1]->Draw("BOX"); 
    } 
     
    c_1.Print("Leakage_LR.gif"); 
  } 
} 
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5.3.2 Leakage and Efficiency 

Efficiency_a.C 

#include <iostream> 
#include <iomanip> 
 
int Efficiency_a() 
{ 
   
  //Backup to file 
  streambuf *output_buf; 
  ofstream output_stream; 
  output_stream.open("Efficiency_a.txt"); 
  output_buf = output_stream.rdbuf(); 
  cout.rdbuf(output_buf); 
   
 
  //Input: 
  // get 'thresholds[]' and 'SPE_mean[]/sigma[]' from 'SPE_P3.C'  
   
  //Program: 
  // loops over P1 through P7 calculating single channel efficiency of scintillators 12-19 
  // the effect of overlap is taken into consideration with an 'or' statement 
 
  gROOT->ForceStyle(); 
  gROOT->SetStyle("Plain"); 
    
  //Determined by inspection of the minimum for P3 
  float thresholds[32] = {0.0, 0.0, 70.0, 70.0, 70.0, 70.0, 90.0, 90.0, 100.0, 100.0, 100.0, 
         80.0, 90.0, 80.0, 80.0, 90.0, 80.0, 70.0, 80.0,  80.0,  50.0,  
         40.0, 40.0, 60.0, 60.0, 30.0, 80.0, 40.0, 50.0,  90.0,  80.0, 0.0}; 
 
  //SPE data from SPE_P3.C 
  float SPE_mean[32] = {0.0, 535.54, 164.95, 164.60, 156.23, 158.08, 242.23, 173.04, 220.08, 227.65, 189.09,  
               150.40, 178.75, 146.53, 166.79, 165.97, 194.37, 145.65, 208.20, 176.26, 129.30,  
        125.46, 116.04, 137.64, 164.51, 83.40, 159.28, 113.11, 132.74, 185.54, 178.19, 0.0}; 

 
  float SPE_sigma[32] = {0.0, 147.01, 64.25, 53.30, 56.86, 66.92, 100.89, 60.87, 76.10, 84.19, 85.30,  
    58.49, 66.30, 49.03, 59.69, 57.57, 77.03, 57.17, 102.89, 94.51, 60.08,  
    53.61, 51.55, 51.64, 61.61, 45.14, 61.86, 61.10, 56.97, 86.76, 83.53, 0.0}; 

 
  gStyle->SetPalette(1); 
 
  //Allocate array indicating whether or not an event is 'hot' outside the loop as a pointer 
  int* hot = NULL; 
 
  //Loop over P1.root through P7.root 
  for (int ifile=3; ifile<=3; ifile++){ 
 
    string infile = Form("P%d.root",ifile); 
    TFile *_file0 = TFile::Open(infile.c_str()); 
     
    cout<<endl<<endl<<"For "<<infile<<":"<<endl; 
     
    //Get the tree 
    tv__tree = (TTree *) gROOT->FindObject("ntuple"); 
     
    //Get the leaves 
    TLeaf *l_s[32]; 
    l_s[0] = tv__tree->FindLeaf("bottomtrig"); 
    l_s[31] = tv__tree->FindLeaf("toptrig"); 
    for ( int ileaf = 1; ileaf <= 30; ileaf++ ) { 
      string s_leaf =Form("s%d",ileaf); 
      l_s[ileaf] = tv__tree->FindLeaf(s_leaf.c_str()); 
    } 
     
    // 'nevent' is the number of events 
    Int_t nevent = int(tv__tree->GetEntries()); 
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//******************************************************************************************** 
    // 'hot[event#]==1' iff the event is hot (i.e. greater than than 50percent of scint. above 
threshold) 
    // requires some squirrely programming due to inability to redim an array in C++ 
    delete [] hot; 
    hot = NULL; 
    hot = new int[nevent]; 
    for (int ihot=0; ihot<nevent; ihot++) { 
      hot[ihot] = 0; 
    } 
    int lit=0; 
    int hot_total=0; 
     
    for ( int iloop = 0; iloop < nevent; iloop++) { 
      tv__tree->GetEntry(iloop); 
       
      lit = 0; 
      for (int ileaf=1; ileaf<=30; ileaf++) { 
 if ( l_s[ileaf]->GetValue() > thresholds[ileaf]) { 
   lit++; 
 } 
      } 
       
      if (lit>15) { 
 hot_total++; 
 hot[iloop]=1; 
      } 
    } 
 
    float percent_hot = ( (float) hot_total ) / ((float) nevent); 
    cout<<"Hot Events / Total Events = "<<hot_total<<" / "<<nevent<<" = "<<percent_hot<<endl; 
    cout<<"Events considered (not 'hot') = "<<(nevent - hot_total)<<endl<<endl; 
    
//******************************************************************************************** 
 
    int stepsx = 12; 
    //int stepsy = 12; 
    float za[12] = {.5 ,.75, 1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 2.5, 2.75, 3.0, 3.25}; 
    //float a[12] = {}; 
    //float zb[12] = {-.75, -.5, -.25, 0.0, .25, .5, .75, 1.0, 1.25, 1.5, 1.75, 2.0}; 
    //float zb[2] = {-0.842, -0.524, -0.253, 0.0, 0.253, 0.524, 0.842, 1.282}; 
    float a[12][31]; 
    //   float b[12][31]; 
     
    //Set thresholds_a 
    for (int ihist=1; ihist<=30; ihist++) { 
      for (int i=0; i<stepsx; i++){ 
 a[i][ihist] = za[i]*SPE_mean[ihist]; 
 //a[i][ihist] = SPE_sigma[ihist]*za[i]+SPE_mean[ihist]; 
 //b[i][ihist] = SPE_sigma[ihist]*zb[i]+SPE_mean[ihist]; 
      } 
    } 
     
     
    //Efficiency 
    int trig1[8][12];    //N 
    int trig2[8][12];    //k 
    float err1[8][12];   //Poisson 
    float err2[8][12];   //Binomial 
    float eff[8][12]; 
     
    for(int i=0; i<8; i++) { 
      for(int j=0;j<12;j++) { 
 trig1[i][j] = 0;  
 trig2[i][j] = 0;  
 err1[i][j] = 0.0; 
 err2[i][j] = 0.0; 
 eff[i][j] = 0.0; 
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      } 
    } 
     
    for (int iloop=0;iloop<nevent;iloop++){ 
      tv__tree->GetEntry(iloop); 
       
      for (int imid = 12; imid<=19; imid++) { 
  
 //Exclude the hot events  
 if (hot[iloop] != 1){ 
    
   //Loop over all changes in thresholds 
   for (int ia=0; ia<12; ia++) { 
      
     //Are scintillators in column (top and bottom row) above the new and improved 
threshold_a? 
     if ( (l_s[imid-10]->GetValue() > a[ia][imid]) && (l_s[imid+10]->GetValue() > 
a[ia][imid]) ){ 
        
       trig1[imid-12][ia]++; 
        
       //Are scintillators in column (middle row) above the old threshold? 
       if ( (l_s[imid-1]->GetValue() > thresholds[imid-1]) || (l_s[imid]->GetValue() > 
thresholds[imid]) || (l_s[imid+1]->GetValue() > thresholds[imid+1]) ){ 
   
  trig2[imid-12][ia]++; 
       } 
     } 
   } 
 } 
      }   
    } 
     
    for(int i=0; i<8; i++) { 
      for(int j=0;j<12;j++) { 
 float k = float(trig2[i][j]); 
 float N = float(trig1[i][j]); 
 eff[i][j] = k/N; 
 err1[i][j] = k/N * sqrt(1/k + 1/N); 
 err2[i][j] = 1/N * sqrt(k*(1 - k/N)); 
      } 
    } 
     
    for (int j=0; j<12; j++) { 
      for (int i=0; i<8; i++) { 
 cout<<setw(7)<<setiosflags(ios::fixed)<<setprecision(4)<<eff[i][j]; 
      } 
      cout<<endl; 
      for (int i=0; i<8; i++) { 
 cout<<setw(7)<<trig1[i][j]; 
      } 
      cout<<endl; 
      for (int i=0; i<8; i++) { 
 cout<<setw(7)<<setiosflags(ios::fixed)<<setprecision(4)<<err1[i][j]; 
      } 
      cout<<endl; 
      for (int i=0; i<8; i++) { 
 cout<<setw(7)<<setiosflags(ios::fixed)<<setprecision(4)<<err2[i][j]; 
      } 
      cout<<endl<<endl; 
    } 
  
  }   
  return 0; 
} 
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Efficiency_ab.C 

#include <iostream> 
#include <iomanip> 
 
int Efficiency_ab() 
{ 
   
  //Backup to file 
  streambuf *output_buf; 
  ofstream output_stream; 
  output_stream.open("Efficiency_ab.txt"); 
  output_buf = output_stream.rdbuf(); 
  cout.rdbuf(output_buf); 
   
  //Input: 
  // get 'thresholds[]' and 'SPE_mean[]/sigma[]' from 'SPE_P3.C'  
   
  //Program: 
  // loops over P1 through P7 calculating single channel efficiency of scintillators 12-19 
  // the effect of overlap is taken into consideration with an 'or' statement 
 
  gROOT->ForceStyle(); 
  gROOT->SetStyle("Plain"); 
    
  //Determined by inspection of the minimum for P3 
  float thresholds[32] = {0.0, 0.0, 70.0, 70.0, 70.0, 70.0, 90.0, 90.0, 100.0, 100.0, 100.0, 
         80.0, 90.0, 80.0, 80.0, 90.0, 80.0, 70.0, 80.0,  80.0,  50.0,  
         40.0, 40.0, 60.0, 60.0, 30.0, 80.0, 40.0, 50.0,  90.0,  80.0, 0.0}; 
 
  //SPE data from SPE_P3.C 
  float SPE_mean[32] = {0.0, 535.54, 164.95, 164.60, 156.23, 158.08, 242.23, 173.04, 220.08, 227.65, 189.09,  
          150.40, 178.75, 146.53, 166.79, 165.97, 194.37, 145.65, 208.20, 176.26, 129.30,  
   125.46, 116.04, 137.64, 164.51, 83.40, 159.28, 113.11, 132.74, 185.54, 178.19, 0.0}; 

 
  float SPE_sigma[32] = {0.0, 147.01, 64.25, 53.30, 56.86, 66.92, 100.89, 60.87, 76.10, 84.19, 85.30,  
    58.49, 66.30, 49.03, 59.69, 57.57, 77.03, 57.17, 102.89, 94.51, 60.08,  
    53.61, 51.55, 51.64, 61.61, 45.14, 61.86, 61.10, 56.97, 86.76, 83.53, 0.0}; 

 
  gStyle->SetPalette(1); 
 
  //Allocate array indicating whether or not an event is 'hot' outside the loop as a pointer 
  int* hot = NULL; 
 
  //Loop over P1.root through P7.root 
  for (int ifile=3; ifile<=3; ifile++){ 
 
    string infile = Form("P%d.root",ifile); 
    TFile *_file0 = TFile::Open(infile.c_str()); 
     
    cout<<endl<<endl<<"For "<<infile<<":"<<endl; 
     
    //Get the tree 
    tv__tree = (TTree *) gROOT->FindObject("ntuple"); 
     
    //Get the leaves 
    TLeaf *l_s[32]; 
    l_s[0] = tv__tree->FindLeaf("bottomtrig"); 
    l_s[31] = tv__tree->FindLeaf("toptrig"); 
    for ( int ileaf = 1; ileaf <= 30; ileaf++ ) { 
      string s_leaf =Form("s%d",ileaf); 
      l_s[ileaf] = tv__tree->FindLeaf(s_leaf.c_str()); 
    } 
     
    // 'nevent' is the number of events 
    Int_t nevent = int(tv__tree->GetEntries()); 
 
    
//******************************************************************************************** 



- 38 - 

 

    // 'hot[event#]==1' iff the event is hot (i.e. greater than than 50percent of scint. above 
threshold) 
    // requires some squirrely programming due to inability to redim an array in C++ 
    delete [] hot; 
    hot = NULL; 
    hot = new int[nevent]; 
    for (int ihot=0; ihot<nevent; ihot++) { 
      hot[ihot] = 0; 
    } 
    int lit=0; 
    int hot_total=0; 
     
    for ( int iloop = 0; iloop < nevent; iloop++) { 
      tv__tree->GetEntry(iloop); 
       
      lit = 0; 
      for (int ileaf=1; ileaf<=30; ileaf++) { 
 if ( l_s[ileaf]->GetValue() > thresholds[ileaf]) { 
   lit++; 
 } 
      } 
       
      if (lit>15) { 
 hot_total++; 
 hot[iloop]=1; 
      } 
    } 
 
    float percent_hot = ( (float) hot_total ) / ((float) nevent); 
    cout<<"Hot Events / Total Events = "<<hot_total<<" / "<<nevent<<" = "<<percent_hot<<endl; 
    cout<<"Events considered (not 'hot') = "<<(nevent - hot_total)<<endl<<endl; 
    
//******************************************************************************************** 
 
 
    int stepsx = 8; 
    int stepsy = 8; 
    //float za[12] = {-.5 ,0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0}; 
    //float zb[12] = {-.75, -.5, -.25, 0.0, .25, .5, .75, 1.0, 1.25, 1.5, 1.75, 2.0}; 
    float za[8] = {-0.842, -0.524, -0.253, 0.0, 0.253, 0.524, 0.842, 1.282}; 
    float zb[8] = {-0.842, -0.524, -0.253, 0.0, 0.253, 0.524, 0.842, 1.282}; 
    float a[12][31]; 
    float b[12][31]; 
 
    //Set thresholds_a 
    for (int ihist=1; ihist<=30; ihist++) { 
      for (int i=0; i<stepsx; i++){ 
 a[i][ihist] = SPE_sigma[ihist]*za[i]+SPE_mean[ihist]; 
 //b[i][ihist] = SPE_sigma[ihist]*zb[i]+SPE_mean[ihist]; 
      } 
    } 
 
    //Set thresholds_b 
    for (int ihist=1; ihist<=30; ihist++) { 
      for (int i=0; i<stepsy; i++){ 
 //a[i][ihist] = SPE_sigma[ihist]*za[i]+SPE_mean[ihist]; 
 b[i][ihist] = SPE_sigma[ihist]*zb[i]+SPE_mean[ihist]; 
      } 
    } 
 
    //Efficiency 
    int trig1[8][8]; 
    int trig2[8][8]; 
     
     
    for (int imid = 12; imid<=19; imid++) { 
 
      //Ensure trig counters initialized to zero 
      for (int iclearx=0; iclearx<stepsx; iclearx++){ 
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 for (int icleary=0; icleary<stepsy; icleary++){ 
   trig1[iclearx][icleary] = 0; 
   trig2[iclearx][icleary] = 0; 
 } 
      } 
           
      for (int iloop=0;iloop<nevent;iloop++){ 
 tv__tree->GetEntry(iloop); 
  
 //Exclude the hot events  
 if (hot[iloop] != 1){ 
    
   //Loop over all changes in thresholds 
   for (int ia=0; ia<stepsx; ia++) { 
     for (int ib=0; ib<stepsy; ib++){ 
        
       //Are scintillators in column (top and bottom row) above the new and improved 
threshold_a? 
       if ( (l_s[imid-10]->GetValue() > a[ia][imid-10]) && (l_s[imid+10]->GetValue() > 
a[ia][imid+10]) ){ 
   
  trig1[ia][ib] = trig1[ia][ib] + 1; 
   
  //Are scintillators in column (middle row) above the old threshold? 
  if ( (l_s[imid-1]->GetValue() > b[ib][imid-1]) || (l_s[imid]->GetValue() > 
b[ib][imid]) || (l_s[imid+1]->GetValue() > b[ib][imid+1]) ){ 
   
    trig2[ia][ib] = trig2[ia][ib]+1; 
  } 
       } 
     } 
   } 
 } 
      }   
       
      cout<<"FOR s"<<imid<<":"<<endl; 
       
      //Print Denominator (Number of events satisfying first trigger) 
      for (int ix=0; ix<stepsx; ix++){ 
 for (int iy=0; iy<stepsy; iy++) { 
   cout<<setw(7)<<setiosflags(ios::right)<<trig1[ix][iy]; 
 } 
 cout<<endl; 
      } 
      cout<<endl; 
       
      //Print Efficiency 
      for (int ix=0; ix<stepsx; ix++){ 
 for (int iy=0; iy<stepsy; iy++) { 
    
   //Print efficiency provided trig1 is not zero 
   if (trig1[ix][iy] != 0) { 
     float eff = ((float) trig2[ix][iy]) / ((float) trig1[ix][iy]); 
     
cout<<setw(7)<<setiosflags(ios::fixed)<<setiosflags(ios::right)<<setprecision(4)<<eff; 
     cout<<","; 
   } 
   if (trig1[ix][iy] == 0) { 
     cout<<setw(7)<<"ERR"; 
   } 
 } 
 cout<<endl; 
      } 
      cout<<endl<<endl; 
    }   
  } 
  return 0; 
} 
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Surface.C 

#include <iostream> 
#include <iomanip> 
 
int Surface() 
{ 
  //Input: 
  //  
 
  //Program: 
  //  
  //Output: 
  // plots of 2D histograms with linear fit 
 
   
  //Backup to file 
  streambuf *output_buf; 
  ofstream output_stream; 
  output_stream.open("Surface.txt"); 
  output_buf = output_stream.rdbuf(); 
  cout.rdbuf(output_buf); 
     
 
  gROOT->ForceStyle(); 
  gROOT->SetStyle("Plain"); 
  gStyle->SetOptFit(1100); 
  gStyle->SetPalette(1); 
   
   
  float matrix12[12][12]={0.9631, 0.9523, 0.9433, 0.9283, 0.9127, 0.8981, 0.8786, 0.8553, 0.8077, 
0.7325, 0.6546, 0.5750, 
     0.9635, 0.9527, 0.9434, 0.9284, 0.9133, 0.8990, 0.8797, 0.8560, 0.8084, 0.7324, 0.6533, 0.5749, 
     0.9642, 0.9532, 0.9440, 0.9289, 0.9141, 0.8994, 0.8795, 0.8551, 0.8076, 0.7335, 0.6535, 0.5739, 
     0.9642, 0.9540, 0.9448, 0.9296, 0.9156, 0.9015, 0.8813, 0.8570, 0.8113, 0.7372, 0.6569, 0.5759, 
     0.9633, 0.9530, 0.9440, 0.9294, 0.9163, 0.9021, 0.8816, 0.8579, 0.8114, 0.7364, 0.6567, 0.5758, 
     0.9639, 0.9545, 0.9451, 0.9304, 0.9172, 0.9029, 0.8824, 0.8578, 0.8111, 0.7354, 0.6575, 0.5789, 
     0.9645, 0.9556, 0.9463, 0.9319, 0.9187, 0.9044, 0.8836, 0.8595, 0.8117, 0.7347, 0.6568, 0.5772, 
     0.9663, 0.9582, 0.9483, 0.9344, 0.9204, 0.9056, 0.8845, 0.8589, 0.8103, 0.7357, 0.6602, 0.5811, 
     0.9699, 0.9613, 0.9513, 0.9377, 0.9262, 0.9106, 0.8905, 0.8649, 0.8167, 0.7413, 0.6655, 0.5866, 
     0.9687, 0.9588, 0.9496, 0.9348, 0.9244, 0.9103, 0.8918, 0.8679, 0.8187, 0.7462, 0.6742, 0.5993, 
     0.9708, 0.9601, 0.9508, 0.9363, 0.9270, 0.9117, 0.8963, 0.8725, 0.8257, 0.7565, 0.6866, 0.6068, 
     0.9724, 0.9625, 0.9546, 0.9389, 0.9300, 0.9181, 0.9053, 0.8836, 0.8422, 0.7761, 0.7101, 0.6430}; 

   
  // MUST INCLUDE "float matrix13[13][13] = {};" and values from Efficiency_ab.C 
 
  
  //Book histogram 
  TH2F *hist_array = new TH2F("Eff_hist","Leakage and Single Layer Efficiency",8,-(1.0-0.15),-
(1.0-0.95),5,0.15,0.65); 
   
  for (int ihist=0; ihist<8; ihist++) { 
 
    //THIS IS REALLY UGLY 
    float matrix_temp[8][8];   
    if (ihist == 0) { 
      for (int ix=0; ix<8; ix++){ 
 for (int iy=0; iy<8; iy++){ 
   matrix_temp[ix][iy] = matrix12[ix][iy]; 
 } 
      } 
    } 
     
    // MUST INCLUDE A 'matrix_temp[8][8] = matrix1X[12][12]" for each middle scintillator' 
 
    //And Finally...    
    float matrix[8][5]; 
    for (int ix=0; ix<8; ix++){ 
      for (int iy=0; iy<5; iy++){ 
  
 matrix[ix][iy] = matrix_temp[ix][iy]; 
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 float xvar = -(1.0  - (float(0.1*ix) + 0.2)); 
 float yvar = float(0.1*iy) + 0.2; 
 float zvar = matrix[ix][iy] / 8.0; 
  
 hist_array->Fill(xvar,yvar,zvar); 
      } 
    } 
  } 
   
  /*  
  //Book Graphs 
  TGraph2D *graph_array[8]; 
  for (int igraph=0; igraph<8; igraph++) { 
    graph_array[igraph] = new TGraph2D(64); 
    } 
  */ 
   
  TF2 *func_array = new TF2("ffit","[0]+[1]*x+[2]*y",-1.0,0.0,0.0,1.0); 
  func_array->SetParameters(.988,0.0135,-.104); 
  hist_array->Fit(ffit,"0"); 
   
// MUST INCLUDE AN ARRAY OF FUNCTIONS IF MULTIPLE FITS DESIRED 
   
  for (int ifunc=0; ifunc<=0; ifunc++) { 
    float parameter[3]; 
    float error[3]; 
    for (int ipar=0; ipar<3; ipar++) { 
      parameter[ipar] = func_array->GetParameter(ipar); 
      error[ipar] = func_array->GetParError(ipar); 
    } 
    cout<<"Parameters drawn from averaged efficiencies"<<endl; 
    cout<<parameter[0]<<" w/ error "<<error[0]<<" is the constant"<<endl; 
    cout<<parameter[1]<<" w/ error "<<error[1]<<" is the change in efficiency per fraction SPE of 
the trigger scintillators"<<endl; 
    cout<<parameter[2]<<" w/ error "<<error[2]<<" is the change in efficiency per fraction SPE of 
the middle scintillators"<<endl<<endl; 
  } 
   
   
  ////Print histograms   
  TCanvas *c_1 = new TCanvas("c_1","Efficiencies",0,0,500,500); 
   
  //  c_1->Divide(4,2,0.04,0.04); 
  for (int ipad=1; ipad<=1; ipad++) { 
    c_1->cd(ipad); 
    func_array->Draw("SURF4"); 
    hist_array->Draw("SURF2 same"); 
    func_array->GetXaxis()->SetTitle("Thresh 'a' (Frac_SPE)"); 
    func_array->GetXaxis()->SetLabelSize(.03); 
    func_array->GetXaxis()->SetTitleOffset(1.6); 
    func_array->GetXaxis()->SetNdivisions(505); 
    func_array->GetYaxis()->SetNdivisions(505); 
    func_array->GetYaxis()->SetTitle("Thresh 'b' (Frac_SPE)"); 
    func_array->GetYaxis()->SetLabelSize(.03); 
    func_array->GetYaxis()->SetTitleOffset(1.6); 
    //hist_array[ipad-1]->GetZaxis()->SetTitle("Efficiency");   
    func_array->GetZaxis()->SetLabelSize(.03); 
    func_array->GetZaxis()->SetTitleOffset(1.6); 
 
    //func_array->Draw("SURF1 same"); 
  } 
   
  //c_1.Print("graphs.gif"); 
   
  return 0; 
} 

 

 


